Local delivery of GM-CSF protects mice from lethal pneumococcal pneumonia.

نویسندگان

  • Kathrin Steinwede
  • Ole Tempelhof
  • Kristine Bolte
  • Regina Maus
  • Jennifer Bohling
  • Bianca Ueberberg
  • Florian Länger
  • John W Christman
  • James C Paton
  • Kjetil Ask
  • Shyam Maharaj
  • Martin Kolb
  • Jack Gauldie
  • Tobias Welte
  • Ulrich A Maus
چکیده

The growth factor GM-CSF has an important role in pulmonary surfactant metabolism and the regulation of antibacterial activities of lung sentinel cells. However, the potential of intra-alveolar GM-CSF to augment lung protective immunity against inhaled bacterial pathogens has not been defined in preclinical infection models. We hypothesized that transient overexpression of GM-CSF in the lungs of mice by adenoviral gene transfer (Ad-GM-CSF) would protect mice from subsequent lethal pneumococcal pneumonia. Our data show that intra-alveolar delivery of Ad-GM-CSF led to sustained increased pSTAT5 expression and PU.1 protein expression in alveolar macrophages during a 28-d observation period. Pulmonary Ad-GM-CSF delivery 2-4 wk prior to infection of mice with Streptococcus pneumoniae significantly reduced mortality rates relative to control vector-treated mice. This increased survival was accompanied by increased inducible NO synthase expression, antibacterial activity, and a significant reduction in caspase-3-dependent apoptosis and secondary necrosis of lung sentinel cells. Importantly, therapeutic treatment of mice with rGM-CSF improved lung protective immunity and accelerated bacterial clearance after pneumococcal challenge. We conclude that prophylactic delivery of GM-CSF triggers long-lasting immunostimulatory effects in the lung in vivo and rescues mice from lethal pneumococcal pneumonia by improving antibacterial immunity. These data support use of novel antibiotic-independent immunostimulatory therapies to protect patients against bacterial pneumonias.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Depletion of alveolar macrophages during influenza infection facilitates bacterial superinfections.

Viruses such as influenza suppress host immune function by a variety of methods. This may result in significant morbidity through several pathways, including facilitation of secondary bacterial pneumonia from pathogens such as Streptococcus pneumoniae. PKH26-phagocytic cell labeling dye was administered intranasally to label resident alveolar macrophages (AMs) in a well-established murine model...

متن کامل

Delivery of GM-CSF to Protect against Influenza Pneumonia

BACKGROUND Since adaptive immunity is thought to be central to immunity against influenza A virus (IAV) pneumonias, preventive strategies have focused primarily on vaccines. However, vaccine efficacy has been variable, in part because of antigenic shift and drift in circulating influenza viruses. Recent studies have highlighted the importance of innate immunity in protecting against influenza. ...

متن کامل

TLR4-dependent GM-CSF protects against lung injury in Gram-negative bacterial pneumonia.

Toll-like receptors (TLRs) are required for protective host defense against bacterial pathogens. However, the role of TLRs in regulating lung injury during Gram-negative bacterial pneumonia has not been thoroughly investigated. In this study, experiments were performed to evaluate the role of TLR4 in pulmonary responses against Klebsiella pneumoniae (Kp). Compared with wild-type (WT) (Balb/c) m...

متن کامل

Neonatal meningitis caused by streptococcus pneumonia in Iran

Meningitis, pneumonia, and sepsis in newborns and young infants (age < 60 days) are the main causes of childhood mortality in developing countries. Even though streptococcus pneumonia is the most commonly detected microorganism in pediatric bacterial meningitis, it is rare in newborn infants. The following article reports a case of pneumococcal meningitis that was detected early in a newborn in...

متن کامل

GM-CSF and the impaired pulmonary innate immune response following hyperoxic stress.

We have previously demonstrated that mice exposed to sublethal hyperoxia (an atmosphere of >95% oxygen for 4 days, followed by return to room air) have significantly impaired pulmonary innate immune response. Alveolar macrophages (AM) from hyperoxia-exposed mice exhibit significantly diminished antimicrobial activity and markedly reduced production of inflammatory cytokines in response to stimu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 187 10  شماره 

صفحات  -

تاریخ انتشار 2011